PUTNAM PRACTICE SET 10

PROF. DRAGOS GHIOCA

Problem 1. A sequence $\{x_n\}_{n\geq 0} \subset \mathbb{R}$ is called convex if $2x_n \leq x_{n-1} + x_{n+1}$ for each $n \geq 1$. Let $\{b_n\}_{n\geq 0} \subset \mathbb{R}_+$ be a sequence with the property that for each positive real number a, we have that the sequence $\{a^n b_n\}_{n\geq 0}$ is convex. Then prove that the sequence $\{\log(b_n)\}_{n\geq 0}$ is also convex.

Problem 2. Let $P, Q \in \mathbb{R}[x]$ be monic polynomials satisfying the relation: $P^2(x) = (x^2 - 1)Q^2(x) + 1$ for each $x \in \mathbb{R}$. Prove that $P'(x) = \deg(P) \cdot Q(x)$.

Problem 3. We partition the set $\{1, \ldots, 2018\}$ into 6 disjoint subsets A_1, \ldots, A_6 . Prove that there exists some $i \in \{1, \ldots, 6\}$ and there exist $x, y, z \in A_i$ (not necessarily distinct) such that x = y + z.

Problem 4. Let $\{F_n\}_{n\geq 0}$ be the Fibonacci sequence, i.e.,

 $F_0 = 0, F_1 = 1$ and for each $n \ge 2$, we have $F_n = F_{n-1} + F_{n-2}$.

Prove that each positive integer m can be written uniquely as a sum of nonconsecutive (distinct) elements of the Fibonacci sequence, i.e., there exists $\ell \in \mathbb{N}$ and there exist integers

 $1 < i_1 < \dots < i_\ell$ with $i_{j+1} - i_j \ge 2$ for each $j = 1, \dots, \ell - 1$ such that $m = F_{i_1} + \dots + F_{i_\ell}$.